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Supersymmetric Integrable Systems in (2 1 1)
Dimensions and Their Backlund Transformation
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Nonlinear integrable systems in (2 1 1) dimensions which are supersymmetri c
are generated in two different ways. In one approach the homogeneous spaces
of super-Lie algebra are used, and in the other we use a different technique of
extending the dimension of the system. The two sets of equations turn out to be
different. The methodologies of Darbux ±Backlund transformation and gauge
transformation are used to generate the Backlund transformations of these
equations. An important result of our analysis is the existence of purely fermionic
nonlinear systems in (2 1 1) dimensions.

1. INTRODUCTION

Nonlinear integrable systems in one space and one time dimension have

been exhaustively studied. An important aspect of present research is to

extend the class of integrable hierarchies to (2 1 1) dimensions. Important

contributions in this direction have been made by Ablowitz,(1) Fokas,(2) Zakh-
arov,(3) and others.(4) The supersymmetric generalizations of nonlinear systems

in (1 1 1) dimensions and their various properties are being studied, but

supersymmetric systems in (2 1 1) dimensions have not been dealt with in

such detail. In this paper we construct nonlinear integrable systems in (2 1
1) dimensions which are supersymmetric in two different ways. It is observed

that these two sets of nonlinear systems are different. In one approach we
use the spectral parameter-dependent Lax pair in (2 1 1) dimensions utilizing

the idea of Fordy and Kulish(6) in conjunction with the homogeneous space

idea of super-Lie algebra.(7) In the other approach we use the technique of

Zakharov. (8) Solutions for the nonlinear equations so obtained can be studied
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with the help of Backlund transformations(9) derived by two different methods

for the two different Lax operators.

2. FORMULATION

To start with we adopt the method of homogeneous spaces of Lie algebra

which was initially used by Fordy and Kulish. A homogeneous space of a

Lie group G is any differentiable manifold M on which G acts transitively.

If K is an isotropy group of G, then M can be identified with a coset G/K.
Let us denote by g and k the corresponding Lie algebras. Then,

g 5 k % m

and

[k, k] , k; [k, m] , m; [m, m] , k

For our present discussion we consider a super-Lie algebra g whose Z2

grading implies

g 5 geven 1 godd

geven 5 {Hi , EA , ED} (1)

godd 5 {Fi , Fj}

where Hi are the commuting generators, EA , ED are step operators, and F i ,
Fj are their fermionic counterparts. So we consider the required Lax operators

in the following form (A belonging to the Cartan subalgebra):

f x 5 [ l ? A 1 Q] f

f t 5 l n 2 1 f y 1 o
n 2 2

i 5 0

Bn 2 i(x, y, t) l i f (2)

where A, Q, Bn 2 i are matrices belonging to the super-Lie algebra. Integrability
conditions imposed on (2) (we henceforth consider for simplicity n 5 2) yield

- yQ 5 [A, B2]

- xBn 2 i 5 [A, Bn 2 i 1 1] 1 [Q, Bn 2 i] (3)

- tQ 5 - xBn 2 [Q, Bn]

where all the commutators written above are to be interpreted in their graded

form: [A, B ] 5 AB 2 ( 2 1)p(A)p(B) BA, where p(A), p(B) are the parities of



Supersymmetric Integrable Systems in (2 1 1) Dimensions 2039

the corresponding matrices or generators. Let us now assume that

g 5 k % m

and hence Bi 5 Bk
i 1 Bm

i with the stipulation that Bk
i P k, Bm

i P m. Then

equation (3) immediately leads to

- yQ 5 [A, Bm
2 ] (4a)

- xB
k
n 2 i 5 [Q, Bm

n 2 i] (4b)

- tQ 5 - x Bm
n 2 [Q, Bk

n] (4c)

along with

- xB
m
n 2 i 5 [A, Bm

n 2 i 1 1] 1 [Q, Bk
n 2 i], i 5 1, . . . , n 2 2 (4d)

To proceed further let us make a choice of the super-Lie algebra g and the

subspaces k and m. The Lie algebra OSP(2/1) is generated by five generators:
(H, E, F ), which are even, and (P, R), which are odd. The basic commutation

and anticommutation rules are

[H, E ] 2 5 2E, [H, P] 2 5 P, [E, R ] 2 5 P

[R, R ]+ 5 2F, [H, F ] 2 5 2 2F, [H, R] 2 5 2 R, [F, P ] 2 5 R (5)

[P, R ]+ 5 H, [E, F ] 2 5 H, [P, P]+ 5 2 2E

These suggest that

k 5 {H, E, F }, m 5 {P, R} (6)

with the property that [k, k] , k, [k, m] , m, and [m, m] , k. So we set

Q 5 q1P 1 q2R (7)

and substituting in equation (4) for n 5 2, we get

q1t 5 q1xy 1 q1 - 2 1
x (q2q1y 2 q1q2y) 2 2q2 - 2 1

x (q1q1y) (8)

q2t 5 2 q2xy 2 q2 - 2 1
x (q2q1y 2 q1q2y) 2 2q1 - 2 1

x (q2q2y)

which are nonlinear evolution equations in (2 1 1) dimensions. Note that
both (q1, q2) are fermionic.

We can also consider a larger Lie algebra Sl(2/1) generated by the

following set of commutation rules:

[Ha , Eb] 2 5 KabEb , [Ha , Fb] 2 5 2 KabFb

[Ea , Fb] 7 5 d ab, [Ha , Gb] 2 5 V abGb

[E1, E2] 2 5 G, [E1, G2] 2 5 2 F2 (9)



2040 Saha and Roy Chowdhury

[E2, G2]+ 5 F1, [F1, F2] 2 5 G2, [F1, G1] 2 5 1 E2

[F2, G1]+ 5 E1, [G1, G2]+ 5 H1 1 H2

where

Kab 5 1 2 2 1

2 1 0 2 , V ab 5 1 1 2 1

2 1 1 2
The plus and minus signs denote the anti and usual commutators. Here we

make the choice

k 5 {H1, H2, E2, F2} (10)

m 5 {G1, G2, E1, F1}

Again we start from equation (4) and set

Q 5 q1G1 1 q2G2 1 q3E1 1 q4F1

We also assume that

Bm
2 5 S1G1 1 S2G2 1 S3E1 1 S4F1 (11a)

whence - yQ 5 [H1, Bm
2 ] implies that

S1 5 q1y, S2 5 2 q2y, S3 5 1±2 q3y, S4 5 2 1±2 q4y

Furthermore , from equation (4) we get

BK
2 5 M1H1 1 M2H2 1 M3E2 1 M4F2

with

M1 5 - 2 1
x {(q2q1y 2 q1q2y) 2 1±2 (q3q4)y}

M2 5 - 2 1
x (q2q1y 2 q1q2y)

M3 5 - 2 1
x (1±2 q1q4y 1 q4q1y)

M4 5 - 2 1
x {1±2 q2q3y 1 q3q2y}

So finally from equation (4c) the evolution equations turn out to be

q1t 5 q1xy 1 q1M1 2 q3M3 2 q1M2

q2t 5 2 q2xy 2 q2M1 1 q2M2 q4M4 (11b)

q3t 5 1±2 q3xy 2 q1M4 2 q3M2 1 2q3M1

q4y 5 2 1±2 q4xy 2 q2M3 1 q4M2 2 2q4M1
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In contrast to the previous situation, here we have both bosonic (q1, q2) and

fermionic field variables.

It is interesting to note that another type of nonlinear equation can be
generated by relaxing the conditions on the subspaces k and m. Let us

suppose that

[m, m] , k or m

instead of the previously assumed condition. Then for the algebra we have

g 5 k % m

k 5 H (12)

m 5 {P, R, E, F }

so that for n 5 2 we go back to the basic set (3) and deduce

- yQ 5 [A, Bm
2 ] (13a)

- xB
k
2 5 [Q, Bm

2 ]k (13b)

- tQ 5 - xB
m
2 2 [Q, Bk

2] 2 [Q, Bm
2 ]m (13c)

To have the explicit structure we set

Q 5 q1P 1 q2R 1 q3E 1 q4F (14)

In the above equation [A, B]k denotes the projection of the commutator in

the k subspace. Proceeding as before, we get

Bm
2 5 q1yP 2 q2yR 1 1±2 (q3yE 2 q4yF )

Bk
2 5 - 2 1

x { 2 q1q2y 1 q2q1y 2 1±2 (q3q4)}H (15)

So equation (13c) finally leads to

- tq1 5 q1xy 1 1±2 q2q3y 1 q3q2y 1 q1 - 2 1
x QÄ

- tq2 5 2 q2xy 2 1±2 q1q4y 2 q4q1y 2 q2 - 2 1
x QÄ

- tq3 5 1±2 q3xy 1 2q1q1y 1 2q3 - 2 1
x QÄ

- tq4 5 2 1±2 q4xy 1 2q2q2y 2 2q4 - 2 1
x QÄ
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where

QÄ 5 2 q1q2y 1 q2q1y 2 1±2 (q3q4)y

In the case of the algebra Sl(2/1)

k 5 {H1, H2} (16a)

m 5 {G1, G2, E1, F1, E2, F2}

In this case

Q 5 q1G1 1 q2G2 1 q3E1 1 q4F1 1 q5E2 1 q6F2 (16b)

Without giving the details of the computation, we can just quote the final

result. The nonlinear equations turn out to be

q1t 5 q1xy 1 q3q5y 1 1±2 q5q3y 1 q1(M 2 M 8)

q2t 5 2 q2xy 1 q4q6y 1 1±2 q6q4y 2 q2(M 2 M 8)

q3t 5 1±2 q3xy 2 q1q6y 2 q6q1y 1 q3(2M 2 M 8) (17)

q4t 5 2 1±2 q4xy 1 q2q5y 1 q5q2y 2 q4(2M 2 M 8)

q5t 5 2 q5xy 2 q4q1y 2 1±2 q1q4y 2 q5M

q6t 5 q6xy 2 q3q2y 2 1±2 q2q3y 1 q6M

where

M 5 - 2 1
x ( 2 q1q2y 1 q2q1y 2 1±2 q3q4y 2 1±2 q4q3y)

M 8 5 - 2 1
x ( 2 q1q2y 1 q2q1y 1 q5q6y 2 q6q5y)

3. THE SECOND APPROACH

The form of the Lax pair used in the previous section was dictated by

the fact that one needs to have the commutator of matrices in order to utilize

the concept of homogeneous spaces. Thus we used a Lax operator depending
both on the parameter j and the operator - y. But one can also use a two-

dimensional Lax operator without any such spectral parameter.

This form of Lax operator was previously used by Zakharov, among

others. One can also have supersymmetric equations in (2 1 1) dimensions

without using the concept of homogeneous space if this type of Lax operator
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is used. We write the two parts of the Lax operators as

T1(Q) 5 - x 1 H1 - y 1 Q
(18)

T2(Q) 5 i - t 1 H1 - 2
y 1 A - y 1 B

and impose the condition

(T1T2 2 T2T1) C 5 0 (19)

We consider the case of the Lie algebra SL(2/1). Evaluating (19) explicitly,
we get

(T1T2 2 T2T1) C

5 ( - xB 1 H - yB 1 QB 2 i - tQ 2 H1 - 2
yQ 2 A - yQ 2 BQ) C

1 ( - xA 1 H1 - yA 1 H1B 1 QA 2 2H1 - yQ 2 AQ 2 BH1)

3 - y C 1 (H1A 1 QH1 2 H1Q 2 AH1) - 2
y C (20)

Equating to zero the coefficients of c , - y c , - 2
y C , we get

- xB 1 H1 - yB 1 [Q, B] 2 i - tQ 2 H1 - 2
yQ 2 A - yQ 5 0 (21a)

- xA 1 H1 - yA 1 [H1, B] 1 [Q, A] 2 2H1 - yQ 5 0 (21b)

[H, A] 1 [Q, H1] 5 0 (21c)

Equation (21c) implies Q 5 A, whence from (21b) we get

- xQ 1 H1 - yQ 5 [H1, B ] (22)

which determines the matrix B. We get

b2 5 1±2 - 2 q3, b3 5 - 2 q1, b4 5 1±2 - +q4

b6 5 - +q5, b7 5 q2x, b8 5 2 q6x

where

- 2 5 - y 2 - x , - + 5 - y 1 - x (23)

On the other hand, the diagonal elements of B are

b1 5 1 - 2 1
1 - 2 (q1q2 1 1±2 q3q4)

b5 5 2 - 2 1
2 - +(q5q6 1 1±2 q3q4) (24)

b9 5 q2q1 2 q6q5
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Once the matrices A and B are determined, one can write down the nonlinear

systems from equation (21a):

iq3t 5 - +b2 2 - 2
yq3 2 q1q6y 1 q3b5 1 q1b8 2 b1q3 2 b3q6

iq1t 5 - +b3 2 - 2
yq1 2 q3q5y 1 q3b6 1 q1b9 2 b1q1 2 b2q5

iq4t 5 2 - 2 b4 1 - 2
yq4 2 q5q2y 1 q4b1 1 q5b7 2 b5q4 2 b6q2 (25)

with similar equations for (q5, q6, q2). It is quite obvious that similar computa-

tions can also be performed for the case of any other super-Lie algebra.

4. BACKLUND TRANSFORMATION

The solutions of the nonlinear integrable systems derived above can be
studied through the use of Backlund transformation. There are several ways

to arrive at such results. One can use the discrete symmetry of the Lax

operator, the method of Riccati equations, that of Gauss decomposition, and

lastly that of Daboux transformation. Here we have adopted the last approach

for the Lax operator (2). Suppose we have two sets of solutions of the

same nonlinear system given as Q and Q8, which occur as potentials in the
corresponding linear problems,

c 8x 5 ( l A 1 Q8) c
(26)

c x 5 ( l A 1 Q) c

In the Darboux approach one assumes that c 8 5 D c with D 5 l D0 1 D1.
Equation (26) along with c 8 5 D c immediately leads to

Dx 5 ( l A 1 Q8)D 2 D( l A 1 Q) (27)

Putting in this equation the form D0 l 1 D1 of D, we get [with the form of

Q given in (16b)]

D1 5 A

D0x 5 Q8D0 2 D0Q (28)

[A, D0] 1 Q8A 2 AQ 5 D1x

The last and first equation of (28) at once lead to [for the set of equations

(11), A 5 H1]

Doff
0 5 1

0 1±2 (q3 1 q83) q1

1±2 (q4 1 q84) 0 q5

q82 q86 0 2 (29)
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The elements Ddiag
0 are given by the diagonal part of the second equation

(28), which is

Ddiag
0 5 1

- 2 1
x f (12, 34) 0 0

0 - 2 1
x f (56, 34) 0

0 0 d 2 (30)

where d is constant and

f (ij, kl ) 5 q8i q8j 2 qi qj 1 1±2 (q8kq8l 2 qkql)

Next the off-diagonal part of the same equation yields

Q8 (Ddiag
0 1 Doff

0 ) 2 (Ddiag
0 1 Doff

0 )Q 5 (Doff
0 )x (31)

which gives the explicit connection between the old and new variables Q,
Q8 when Ddiag

0 and Doff
0 are substituted from equations (29) and (30). Equation

(31) gives a set of six equations for the Backlund transformation in the Sl(2/

1) case discussed in equation (17). Incidentally it may be mentioned that

such an approach does not hold in the case of the Lax operators given in (18).

For such types of Lax operators it is customary to write

T1(Q) 5 - x 1 H1 - y 1 Q (32)

T1(Q8) 5 - x 1 H1 - y 1 Q8

where Q, Q8 are given as [see (16b)]

T2(Q) 5 i - t 1 H1 - 2
y 1 A - y 1 B

T2(Q8) 5 i - t 1 H1 - 2
y 1 A8 - y 1 B8 (33)

along with the condition

[T1 T2] 5 0

which implies

[T 81, T 82] 5 0

If c and c 8 denote the common eigenfunctions of the initial and final Lax

pair, then the gauge transformation

c 8 5 D(Q8, Q) c (34)

should exist such that

T1(Q8)D(Q8, Q) 2 D(Q8, Q)T1(Q) 5 0
(35)

T2(Q8)D(Q8, Q) 2 D(Q8, Q)T2(Q) 5 0
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To proceed further, set D(Q8, Q) 5 a - y 1 D0(Q8, Q) in the two equations

of (35) and equate the coefficients of c and - y c to zero. This yields

- xD0 1 H1 - yD0 2 a - yQ 1 Q8D0 2 D0Q 5 0 (36)

[H1, D0] 1 Q8 a 2 a Q 5 0 (37)

when the first condition of (35) is used. Here we have assumed

a 5 1 a 1

a 2

a 3 2 5 diagonal constant matrix

whence one gets

Doff 5 1
0 1±2 ( a 1q3 2 a 2q83) ( a 1q1 2 a 3q81

1±2 ( a 1q84 2 a 2q4) 0 a 3q85 2 a 2q5

a 1q82 2 a 3q2 a 3q6 2 a 2q86 0 2
On the other hand, the diagonal part of (36) is given by

Ddiag 5 1
a 1 - 2 1

t f (12, 34) 0 0

0 2 a 2 - 2 1
2 f (56, 34) 0

0 0 a - 2 1
x f (12, 56) 2

Finally, using this explicit expression for D0 in the equation obtained from

the off-diagonal parts of (36), one gets the explicit Backlund transformation.

5. CONCLUSION

In the above analysis we have shown how supersymmetric generalization

of nonlinear equations in (2 1 1) dimensions can be constructed and analyzed

through the explicit realization of the Backlund transformation. It is interesting

to observe that the hierarchy of equations is different depending on the

method adopted. Also, the methodology for the derivation of the Backlund
transformation needs be different for the two different situations.
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